
Dominance-Based 
Duplication Simulation

Kai Franz and Grey Golla
https://kai-franz.github.io/dbds/

https://kai-franz.github.io/dbds/


Problem Statement

● Code duplication from shared children allows optimizations
● Duplicating all children is too slow and wasteful
● Solution: Simulate duplication and only apply the duplications that are “worth 

it”
● Two phases: simulate all possible duplications, then apply the worthwhile 

ones



Phase 1: Simulate Optimizations

● For each pair of (predBB, BB)
○ Generate a Synonym Map of the ɸ 

nodes in BB as if predBB were the only 
predecessor

○ Find optimizations in BB, add them to 
the synonym map

● Each simulation is completely 
independent*

● The synonym map holds all the 
information needed to apply the 
optimizations later

Synonym Map for (%4, %5)

%.0 i32 0

%6 5

%7 6

%8 18



Phase 2: Applying Optimizations

● For each instruction in the duplicated block
○ Look up in the synonym map:

■ If it should be replaced with a different instruction (e.g. strength reduction), replace it
■ If it should be deleted (e.g. replaced with a constant), delete it
■ Otherwise, clone the instruction

○ For each operand:
■ Check if the operand is in the synonym map* and replace it

○ Handle the uses of the variable
■ Add the new instruction to the synonym map for future local instructions to see
■ If the variable is used outside the current BB, see below

○ Add the new instruction to the end of the predecessor BB



Phase 2: Duplicating Code in SSA

● Need to deal with vars that are seen “outside” the current BB
○ Referenced in other BB
○ Referenced by the phi nodes of the current BB

● Add ɸ node for each var
○ Place in new “phiBB” that is the only successor of the duplicated code
○ This successor inherits all old successors of the duplicated BB

● Replace uses of var with uses of that ɸ node
○ Except if that use is in the duplicated BB, unless it’s in a ɸ node
○ Except in the ɸ node we just generated
○ Including in future optimizations we’ve planned



A Trivial Example

phi=%0 phi=0
phi=%0

phi=0



Loop and Interacting Duplications

q=2 q=p+6



Future Work

● Use cost heuristic to determine when duplication is beneficial
○ Duplicating increases code size

■ Increased workload for later optimization passes
■ Can use JIT profiling information to guide optimization of hot paths

● Better clean-up of simulation artifacts
○ Detect new optimizations allowed by the application of multiple simulated optimizations
○ Detect simulation interactions at simulation time?

● More simulated optimizations
○ Paper lists Conditional Elimination
○ Any local optimization could be beneficial



Generation of extra basic blocks



Multiple Optimizations in a row

1 1

1

1

2

2

2 2


