
Major Changes
The only major change that we made was to add “apply the resulting optimization” to our list of
tasks as part of the 75% goal. It is an important part of the process, since otherwise our
simulations cannot actually affect the output code.
The only other change is that we’re using LLVM’s built-in constant folding engine so we correctly
support the various arithmetic operations instead of hand-coding a small, buggy subset of them.
As such, it was trivial to support both addition and other operations.

What we have accomplished so far
We are exactly on the (revised) schedule: we are done with the DBDS simulation, constant
folding, and applying the simulation results to the generated code. See below for an example of
code duplication enabling significant constant folding:

Before DBDS pass After DBDS pass



Meeting our milestone
We met our milestone, as I said above. We have a working simulation framework, simulated
constant folding, and application of our simulated results on the final code output.

Surprises
We were surprised by how smoothly the simulation process went. Iterating over the basic
blocks, even in Dominance Tree order, was pretty easy. Also, it was not difficult to use LLVM’s
constant folding function with a new instruction that was generated for the simulation.

On the other hand, applying the results of the simulation was shockingly difficult. It’s extremely
fiddly to rearrange the CFG such that a basic block is bypassed. For example, variables that
were generated in the duplicated block could be accessed anywhere later in the CFG,
necessitating creation of a “landing pad” block that has phi nodes for these variables. Then we
need to replace only the correct uses of that variable with the phi function (only phi nodes in the
duplicated block, non-phi nodes in the “landing pad” block, and all other external uses).

Revised schedule
You can see the revised checklist on our website, but it and our schedule are very much on
track. We foresee no problem meeting, or more likely beating, our schedule for implementing
more optimizations.

Resources needed
We have all the resources we need to be successful.


