
Final Report: Implementation of

Dominance-Based Duplication

Simulation in LLVM

Kai Franz and Grey Golla

Motivation

When performing optimizations across a merge point, it is necessary to duplicate code to make

use of information specific to each control-flow path.

Figure 1: Example constant folding optimization enabled by duplication

Here, duplicating a = z * 2 allows us to make use of the fact that z = 2 in the right path, so we

can constant fold z into the statement a = z * 2, turning it into a = 4. On the right path, the

computation a = z * 2 can be skipped over, reducing the number of instructions that have to be

executed. On the left path, however, since no assumptions can be made about the value of z, z

* 2 must still be computed. As such, duplicating code across every merge point would be

unhelpful, since it would only sometimes enable optimizations such as constant folding.

Because duplication also causes an increase in code size, it can also cause subsequent

optimization passes to take longer, as well as slowing down execution. We address this problem

by duplicating code only when it enables optimizations to be made.

Related Work

As mentioned in the original DBDS paper, there are several related works. Meuller and

Whalley introduced a code replication optimization, where unconditional branches are

eliminated by duplicating code [3]. This optimization is related to DBDS because both

optimizations involve duplicating code across branches to reduce dynamic instruction counts at

the expense of code size.

Chambers introduces another duplication optimization in the Self compiler where code is

duplicated from a merge point into its predecessors and then specialized based on code in its

predecessor [1]. This splitting technique was used to apply devirtualization to polymorphic code

in an object-oriented language [1]. Unlike DBDS, splitting did not simulate duplicating; instead, it

used either reluctant or eager splitting to determine when to perform code duplication. Under

reluctant splitting, merge points are initially merged together, and the compiler later backtracks

and splits them apart if it determines that splitting would be beneficial. Under eager splitting, the

compiler always splits merge points, merging them together if it realizes afterwards that the two

paths generated the exact same code. Eager splitting can easily cause an exponential increase

in code size. The Self compiler also supports divided splitting, where eager splitting is used for

hot paths while reluctant splitting is used for uncommon paths. Self's splitting optimizations differ

from DBDS in that they are only used to perform monomorphism optimizations, and that DBDS's

simulation is much faster than reluctant splitting, allowing the compiler to check what

optimizations are enabled by duplication in all cases rather than relying on a heuristic to decide

when to check.

Technical Details

Simulating the Optimizations

The optimization pass is split into two phases for each function to be optimized. In the

first phase, we walk the dominance tree and find pairs of basic blocks that fit the necessary

pattern: the block to be duplicated has multiple predecessors, and the predecessor we’re

looking at only has one successor. Once we find a pair, we generate a synonym map for that

pair. The synonym map takes values found in the original basic block and maps them to their

corresponding values assuming the code is duplicated. This map is initialized to hold a mapping

for each phi node in the duplicated block: these map to the values they take given the correct

predecessor block.

Once we’ve generated the synonym map, we have all the information we need to

duplicate the code into the predecessor block, so we can run optimizations on the duplicated

code. Each optimization pass that we run will add entries to the synonym map, from instructions

in the original block to new instructions or constants. See Figure 2 for an example of the

synonym map after a constant folding pass. It’s important to note that at this point optimizations

are simulated: they only affect the synonym map, and do not change the underlying CFG. Once

all optimization passes are complete, the final synonym map is stored to be evaluated and

applied later. This results in one synonym map for each basic block pair that could be

duplicated.

Synonym Map

%.0 i32 0

%6 5

%7 6

%8 18

Figure 2: Example synonym map during simulation of merging %5 into %4.

See figure 3 for the results of applying that synonym map to the CFG.

Applying the Simulation Results

Once all of the duplicated opportunities have been simulated, we have a set of synonym

maps that we can apply to the CFG in the second phase. This would be where we apply

heuristics to choose whether to apply the duplication, but in the current implementation we apply

all of them. For each synonym map, we apply the code duplication:

First, we split the duplicated basic block at its terminating instruction. This provides us

with a new basic block with all the successors of the duplicated block, so it will become the only

successor for both copies of the duplicated code. We call this block the “phiBB” for reasons that

will be clear soon.

Next, we iterate over the instructions in the basic block to be duplicated and replace

them with the instruction from the synonym map, if applicable. We also need to replace the

operands of this instruction with appropriate values. The need for this is simple: when we

duplicate instructions, all uses of that instruction within the duplicated code need to now use the

new instruction. This is conceptually simple to accomplish if we add each cloned instruction to

the synonym map, we can just iterate over each operand and replace it with the mapped value.

Anything not in the synonym map came from outside the current block and doesn’t need to be

modified. Unfortunately, this has a critical pitfall that we explain in the “surprises” section.

The operand modification explained above handles local uses of this instruction, but

global uses need to be handled as well. Because there are now two places where the value is

computed, we need to insert a phi node to choose which one to use. We generate this phi node

in the phiBB, which has the two computations as its only two predecessors. Any uses “seen

outside” the current basic block need to be changed to point to the newly generated phi node,

including phi nodes inside the block that is currently being duplicated.

Finally, we can place this duplicated and modified instruction in the (former) predecessor

block.

Optimization Specifics

This subsection goes over the implementation of each simulated optimization. Generally,

these passes are extremely simple because we are only considering local optimizations.

Constant folding is implemented by using LLVM’s “ConstantFoldInstruction” function. We

do this by first checking if the operands are constants, then, if they are, cloning the instruction

and applying the synonym map to the operands. This allows us to correctly support all of the

constant folding operations that LLVM supports instead of hand-making a buggy subset of them.

Strength reduction is implemented by hand, the same way we implemented it in lab 1.

Read Elimination, as described in the paper, seems to be a subset of common

subexpression elimination. As such, implementing it inside of duplicated code essentially

implements partial redundancy elimination. We implemented CSE using a local version of the

“available expression” pass that we wrote for lab 2, using the provided “Expression” class.

Experimental Results

We did not implement heuristics to choose only some of the code duplication

opportunities, so it would be impossible to test our system on meaningful benchmarks due to

the explosion in code size. As such, we focused on making and testing microbenchmarks that

demonstrate the correctness of our pass.

Figure 3 shows the results of duplicating code into one branch with no improvement, and

into the other branch which allows significant constant folding opportunities. Along the right path

through the code, we remove 3 computations, while the left path is completely unaffected.

Figure 3: Microbenchmark of constant folding

Figure 4 shows a microbenchmark for strength reduction that is enabled by code

duplication. While we do not reduce the number of instructions in this case, the right hand side

now only has to compute an inexpensive left shift operation instead of the multiply formerly

required by both sides.

Figure 4: Duplication enabling strength reduction

Figure 5 shows a microbenchmark showing common subexpression elimination. The left

path computes “%1 + %2” twice, while the right path only computes it once, in a textbook

example for partial redundancy elimination. While another solution, such as lazy code motion,

would catch cases like this, this pass allows the subexpressions to be detected completely

locally instead of requiring a complicated, multi-pass system like lazy code motion.

Figure 5: Microbenchmark for “read elimination” or common subexpression elimination

Surprises and Lessons Learned

Because the DBDS optimization involves significant changes to a program's control-flow

graph, there were many SSA-related details that we had to address when moving instructions

between basic blocks. For example, we had to construct an extra basic block at the merge point

that holds phi nodes for the instructions that were duplicated across the predecessor paths.

One of the biggest challenges was tracking down all of the global uses of the instructions

that we were duplicating. As stated in the “technical details” section, we need to replace the

uses of the duplicated instruction with the newly generated phi node. LLVM tracks the uses of

the instruction, so we can use “replaceUsesWithIf()” to find the global uses of the instruction.

Unfortunately, this misses a critical location that hides uses of these instructions: other

synonym maps. If a phi node references a value that was generated in a basic block that is then

duplicated, the entry in the second synonym map for that phi node will still hold a reference to

the original computation. This is because LLVM does not know that the synonym map is a “use”

of the instruction. We solved this by generating a global synonym map mapping from the original

instruction to the generated phi node, then, when replacing values that come from outside the

current basic block, we check the global synonym map and then check the local synonym map.

Overall, we learned that modifying a program's control-flow graph in SSA form can be

prohibitively complex. If we did this again, we would run the reg2mem pass before our pass to

de-SSA the program, which according to the LLVM documentation is "intended [to] make CFG

hacking much easier." [4] This would allow us to simply copy instructions that read/write to each

memory location, totally ignoring the source(s) or use(s) of the value. The mem2reg pass could

then be run to convert the program back into valid SSA form.

Conclusion

Our implementation of Dominance Based Duplication Simulation is complete according

to the goals set out at the beginning of this project. We are able to simulate and then apply

several optimizations on duplicated basic blocks. In terms of this being a useful addition to

LLVM, the answer is certainly “not yet,” due to the lack of heuristics to choose which simulations

to apply. The bones, however, are all there and we believe that implementing the code

duplication and simulation application step was the biggest barrier to this being a useful

optimization. With future work adding heuristic choices of duplications to actually complete, as

well as work adding more optimizations to the pass, this could be a meaningful optimization

pass for real code.

Distribution of Total Credit

We believe that we each deserve 50% of the credit. All of the work was completed with “pair

programming” sitting together, and we worked together to solve all of the many, many problems

that came up during implementation.

Bibliography

[1] C. Chambers, “The design and implementation of the self compiler, an optimizing

compiler for object-oriented programming languages,” thesis, 1992.

[2] D. Leopoldseder, L. Stadler, T. Würthinger, J. Eisl, D. Simon, and H. Mössenböck,

“Dominance-based duplication simulation (DBDS): Code duplication to enable

compiler optimizations,” Proceedings of the 2018 International Symposium on

Code Generation and Optimization, 2018.

[3] F. Mueller and D. B. Whalley, “Avoiding unconditional jumps by code replication,”

ACM SIGPLAN Notices, vol. 27, no. 7, pp. 322–330, 1992.

[4] “LLVM's analysis and transform passes¶,” LLVM's Analysis and Transform Passes

- LLVM 15.0.0git documentation. [Online]. Available:

https://llvm.org/docs/Passes.html#reg2mem-demote-all-values-to-stack-slots.

[Accessed: 27-Apr-2022].

