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Summary 

I implemented a vectorized sequential scan in PostgreSQL that leverages instruction-level 

parallelism to perform filtering more efficiently. I then compared my implementation to the 

standard tuple-at-a-time sequential scan implementation in PostgreSQL.


Background 

In a database management system (DBMS), declarative queries are executed via a query plan, 

which is generated by the system. These query plans are composed of building blocks called 

physical operators, which are implemented by programmers working on the DBMS. The 

sequential scan operator is one common physical operator, and it is used to scan a table of 

many (usually unsorted) tuples, filtering for tuples that match a predicate specified by the 

DBMS.


A common approach to implementing physical operators in a database management system is 

called the Volcano model. Under this style, each physical operator is implemented as an 

iterator object, and the query plan is implemented as a tree of these objects. Each result tuple 

of the given query is fetched by calling the getNext() operator on the root of the query plan; in 

turn, this node will call getNext() on its children one or more times, and so on. 
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Figure 1: Example query plan using the Volcano model.


The Volcano model has several benefits, including simplicity, modularity, and ease of 

maintenance. However, the drawback of this approach is that it introduces a significant 

overhead into query execution. The interpretation overhead of jumping between different 

contexts for each physical operator waste valuable CPU cycles, while the tuple-at–a-time 

processing approach hides instruction locality from the processor's dynamic scheduler. [1]


Figure 2: Sample tuple-at-a-time execution flow demonstrating unpredictable branching.
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Most modern processors make use of superscalar execution to achieve maximum efficiency. 

While machine code is generated as a linear sequence of instructions, rather than executing 

one instruction at a time, superscalar processors will look at a window of several hundred 

instructions and execute them out of order if their operands are ready, executing several 

instructions in parallel on each clock cycle. In order to best leverage the capabilities of a 

superscalar processor, programmers must allow the CPU to understand which instructions are 

likely to be executed in the future. A tuple-at–a-time execution model does this poorly, as 

jumps between physical operators are difficult to predict and can thus lead to suboptimal CPU 

utilization. [1]


Figure 3: Vectorized query execution flow.
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Sequential Scans 

Revisiting the sequential scan operator: this operator typically functions as follows. First, its 

parent node calls getNext() on it. This causes it to call getNext() on its child, which returns the 

next tuple from the database heap, which stores the data. Upon receiving this tuple, the 

sequential scan operator checks if this tuple satisfies the assigned predicate. If it does not, it 

continues to call getNext() on its child until either (1) it returns a satisfactory tuple, or (2) it 

returns NULL. In both cases, it returns the supplied tuple to its parent operator (a NULL tuple 

represents the end of the operator's output). 


This behavior presents a problem for superscalar processors because scanning different tuples 

can result in divergent control flow; if a tuple satisfies the predicate then execution jumps to the 

parent operator; if it fails, the processor must jump to the child operator. These predicates are 

often complex, and the CPU's branch predictor will not be able to exploit patterns in the data 

due to the unsorted nature of the database heap. However, this is not a fundamental problem 

with database query processing; each predicate evaluation is independent and can thus be 

safely executed in parallel. In this project, I aim to target this particular drawback of sequential 

scans and be able to better exploit instruction-level parallelism.


Approach 

I addressed the aforementioned problem using vectorization. This approach is similar to 

software pipelining, where a loop with several operations that are independent across loop 

iterations but dependent on each other within an iteration, is transformed such that the 

independent operations execute in series. Similarly, with vectorization, rather than checking the 

predicate on each tuple, one at a time, the DBMS checks the predicate on a vector of, say, 

1024 tuples. This allows an out-of-order processor to schedule predicate evaluation in parallel, 

increasing processor utilization.
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A simplified version of this transformation is shown below in pseudocode:


 I implemented this optimization starting from PostgreSQL 14.0, which is open source. 


Iteration 

Originally, I based my implementation off of the materialize physical operator, which fetches all 

the tuples of its child operator and makes a copy of them, which can then be rescanned by its 

parent operator. 


Experimental Setup 
I evaluated my setup using microbenchmark SQL queries that I constructed. Compiling 

PostgreSQL from source, I used the following settings:


• Table of 2^20 random double precision floating-point numbers


• Prewarmed buffer pool


• Single-threaded


• JIT expression compilation enabled for every query


• Intel(R) Xeon(R) W-1290 CPU @ 3.20GHz, 64 GB RAM


• Ran each experiment 5x


Since I included the ability to turn off vectorization using PostgreSQL's SQL interface, my 

baseline comparison was on the same database with vectorization turned off.
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Scan->getNext():
  tuple = heap->getNext()
  while tuple is not NULL:
    if satisfiesPredicate(tuple):
      return tuple
  tuple = heap->getNext()
  return NULL

Scan->getNext():
  if vector.empty():
     for i = 0 .. 1024:
        vector[i] = heap->getNext()
     for i = 0 .. 1024:
        bitmap[i] = satisfiesPredicate(vector[i])
     nextTuple = 0
   while !bitmap[nextTuple]:
     nextTuple++

Before vectorization After vectorization



The first microbenchmark, Q1, I constructed scans a table and searches for values that hash to 

a value beginning with a 0 byte, making the predicate unpredictable even if the tuples are 

sorted.


Vectorization resulted in a 5% speedup. Diving deeper, I profiled the performance of Q1 using 

VTune and measured the cycles per instruction (CPI) of the predicate functions for both 

implementations.
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select count(*) from t where digest(c1::text::bytea, 'sha256') like '%00%';

Q1 Execution Time

1260

1277.5

1295

1312.5

1330

Query latency (ms)

Unvectorized Vectorized

Q1 CPI

0.75

0.763

0.775

0.788

0.8

Cycles Per Instruction

Unvectorized Vectorized



The next query, Q2, uses a query that is much more expensive to evaluate than the one in Q1. 

This query computes the SHA256 hash of a floating point before checking if the final hash 

starts with a 0 byte.


Vectorization results in a 1% speedup. 


Profiling with VTune, I compared the percentage of time spent deep inside the predicate 

calculating SHA256 hashes. Q2 spends much more time than Q1 in the hash function, resulting 

in a lower vectorization speedup for Q2. 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SELECT COUNT(*) FROM t WHERE
SUBSTRING(digest(digest(digest(digest(digest(digest(digest(digest(digest(digest(
digest(digest(digest(digest(C1::text::bytea, 'sha256'), 'sha256'), 'sha256'),
'sha256'), 'sha256'), 'sha256'), 'sha256'), 'sha256'), 'sha256'), 'sha256'),
'sha256'), 'sha256'), 'sha256'), 'sha256') FROM 1 FOR 2) = '00'; 

Q2 Execution Time

11.7

11.775

11.85

11.925

12

Q2 Query latency (s)

Unvectorized Vectorized

CPU Time Spent in SHA256 
Function

0

17.5

35

52.5

70

% CPU Time

Q1 Q2



The final query, Q3, has a predicate that is cheap to evaluate: it simply checks if a floating-

point value is less than a constant. 


Vectorization results in a 15x slowdown. Using VTune, I profiled Q3 running both vectorized 

and unvectorized. I found that the vectorized version of Q3 spent much more of its pipeline 

slots front-end bound than the tuple-at-a-time version.
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Q3 Pipeline Slots (Vectorized)

31%

45%

24%

Q3 Pipeline Slots (Unvectorized)

46%

45%

9%

Front-End Bound Retiring Other

select count(*) from t where c1 < 150000000;

Q3 Execution Time

0

550

1100

1650

2200

Q3 Query latency (ms)

Unvectorized Vectorized



Discussion 

Q1 

As shown above, the performance gains of vectorization are extremely workload-dependent. 

The best efficiency gains were observed on a query that had a predicate that required a 

modest number of instructions to evaluate: not too many or too few. We see that Q1 achieved 

the best speedup out of all three workloads. 


Q2 

Q2's much more expensive predicate caused diminishing performance gains due to 

instruction-level parallelism. As shown by the profiler, much more time was spent evaluating 

hash functions inside the predicate, resulting in a low vectorization speedup for Q2. 


Q3 

Q3 is interesting. As it contains the simplest predicate, we might expect it to have the highest 

percentage gains from instruction-level parallelism, yet it performed almost 15x slower with 

vectorization enabled. One of the drawbacks of vectorization is that it requires copying tuples 

into a vector while scanning them, while in tuple-at-a-time processing, tuples can be efficiently 

pipelined between operators. This extra copying introduced by vectorization demands more 

memory bandwidth, a resource that is already scarce in DBMSs. Additionally, the vectorized 

operator needs to store the predicate results so that it knows which tuples it can return in the 

future. Reading and writing this information also increases memory bandwidth.


I suspected that this workload, with such a simple predicate, was heavily memory-bound, and 

introducing vectorization heightened memory pressure without providing much speedup (which 

is gained by efficiently scheduling computation). After profiling both the vectorized and 

unvectorized version of Q3 with VTune, I found that the vectorized version spent a large 

number (24%) of its pipeline spots front-end bound, while the tuple-at-a-time version spent 
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only 9% of its pipeline slots front-end bound. This confirms the idea that the increased memory 

pressure causes vectorized queries to perform poorly.


Looking into the profiler-annotated source code, 3 out of the 5 lines that took the longest to 

execute were reading from or writing to either the predicate result bitmap or the tuple vector. 

Interestingly, reading the saved predicate value was over 20x as expensive as computing it in 

the first place. Computing the predicate was about 15x faster on the vectorized version than 

the unvectorized version, demonstrating the significance of instruction-level parallelism.


Conclusion 
According to VTune, the factor that limited my speedup the most was data movement, and, in 

particular, memory bandwidth. 


The profiler output shows that, in addition to the aforementioned memory stalls, vectorization 

introduces stalls due to switching between DSB and MITE. The DSB (Decoded Stream Buffer) 

caches decoded micro-operations, but when there is a DSB miss, the instructions must be 

decoded again using the MITE (Micro-Instruction Translation Engine). According to VTune, a 
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Pipeline Stalls in Q3

0
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high DSB/MITE penalty is often due to hot regions that are too large to fit into the DSB. In 

addition, the ITLB overhead accounts for over 60 times as many pipeline slots in the vectorized 

implementation than the tuple-at-a-time version. This also appears to be a symptom of having 

a hot region that does not fit into the I-cache: vectorization introduces significantly more 

instructions, a problem that may be exacerbated by loop unrolling the vectorized code. In 

conclusion, both the increased memory pressure from storing tuples an extra time and the 

increased code size caused by vectorization limit its performance gains. 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