
Project Proposal: Parallel Query
Processing in PostgreSQL
Kai Franz

https://kai-franz.github.io/15418-project/

Summary
I am going to implement a simple vectorized database execution engine. This will allow the
database management system (DBMS) to leverage instruction-level parallelism and SIMD
instructions to perform query scans.

Background
DBMSes are used to efficiently process large amounts of data. Database queries, which are
executed by DBMSes, have a high potential for parallelization because they require applying a
computation to billions or trillions of tuples. In this proposal, I will focus on one essential
primitive that is used in every database query: the filter operator. This operator reads through a
table or other data source, checking if each tuple satisfies a given condition. Because
performing this check on each tuple is an independent operation, this operation can be
executed in parallel. PostgreSQL is an open-source DBMS that exploits this parallelism by
using several worker processes to execute a scan; however, PostgreSQL does not exploit
instruction-level parallelism or SIMD instructions. My goal is to implement these two forms of
parallelism for the scan operator in PostgreSQL.

Challenges
The workload that I will focus on is online analytics processing (OLAP). These queries are read-
only and involve scanning large amounts of data.

The workload for the scan operator is well-suited for parallelism due to the independent nature
of each predicate evaluation. The main challenge is the high memory-to-computation ratio: the
scan operator reads through an entire table, performing a small amount of work for each tuple
before moving on to the next one. There is no locality in this operator. Therefore memory
bandwidth may become a bottleneck.

Resources
• I am building off the PostgreSQL 15.0 code base (https://github.com/postgres/postgres/tree/

REL_15_STABLE).

https://kai-franz.github.io/15418-project/
https://github.com/postgres/postgres/tree/REL_15_STABLE
https://github.com/postgres/postgres/tree/REL_15_STABLE

• I will be using the MonetDB/X100 paper as reference (https://www.cidrdb.org/cidr2005/
papers/P19.pdf).

Goals
• 75%: Implement a vectorized executor that exploits instruction-level parallelism.

• 100%: In addition to the previous goal, add support for predicate evaluation.

• 125%: Use SIMD intrinsics to accelerate predicate evaluation.

The demo that I plan to show will be a speedup graph.

Platform Choice
I have chosen PostgreSQL (which is written in C) as the platform of choice for this system
because it is open-source and I am familiar with the codebase from research. In addition,
PostgreSQL has potential to improve its performance on OLAP workloads.

Schedule
• 11/07: Do background reading on the linked paper. Construct microbenchmarks to test the

performance of PostgreSQL.
• 11/14: Begin implementing a simple vectorized scan operator in PostgreSQL.
• 11/21: Finish vectorized scan implementation.
• 11/28: Add support for predicate evaluation
• Milestone: Have a working system that shows a speedup over the existing system on

microbenchmarks
• 12/5: Implement SIMD operators for integer comparison
• 12/12: Run benchmark workloads (TPC-H/TPC-DS). Optimize any bottlenecks.
• Final Report: Have a working vectorized execution engine that supports predicate

evaluation.

https://www.cidrdb.org/cidr2005/papers/P19.pdf
https://www.cidrdb.org/cidr2005/papers/P19.pdf

	Summary
	Background
	Challenges
	Resources
	Goals
	Platform Choice
	Schedule

